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Table3 Eigenvalue sensitivities \;

1st approach 2nd approach 3rd approach
A —8.7949159E+3 —8.7949148E+3 —8.828E+3
Ay Ay 0 0 0
A —3.1990803E+3 —3.199075E+6 3.2E+6
Ay Ay 0 0 0

Table 4 Derivative of the first eigenvector
DOF 1st approach 2nd approach 3rd approach
X1 0 0 0
1 6.7786668E—3 6.7786673E—3 6.78E-3
z1 0 —2.8604516E—-5 —2.5044E-7
Wx1 0 0 0
wy| 0 5.0429107E-5 —2.6053E-7
;1 1.9894528E-2 1.9894527E-2 1.9898E—2
X2 0 0 0
2 3.9641898E-2 3.9641895E—-2 3.9648E-2
22 0 —8.9063400E—-5 —7.7978E-7
Wyx2 0 0 0
®y2 0 6.5473773E-5 5.7324E-7
W 3.9347583E-2 3.9347579E-2 3.9381E-2
Table 5 Effective mass sensitivities

Approach x y z Wy wy ; Mode
Ist 0 6.3989737E-1 0 0 0 9.0761532E-1 Ist
Ist 0 3.6010263E-1 0 0 0 9.2384676E-2  4th
2nd 0 6.3989745E-1 0 O 0 9.0761535E-1 Ist
2nd 0 3.6010255E-1 0 0 0 9.2384646E-2  4th
3rd 0 6.4001E—-1 0o 0 0 9.0777E—-1 Ist
3rd 0 3.60158E-1 0 0 O 9.2398E—-2 4th

amount that eliminates the indeterminacy described in the preced-
ing section. The third approach is the well-known finite difference
method, which can be applied by taking a second perturbation (in
the example, 10~ kg). Neither the second nor the third approach is
exactbecause the evaluation of the derivative was not performed on
the FE model of the given structure but on a perturbed version of it.
Furthermore, the third approach has introduced a finite difference
approximation.In Tables 3 and 4 the eigenvalue sensitivitiesand the
sensitivity of the first eigenvector,respectively,are reported. Similar
results have been obtained for the other eigenvectors.In Table 5 the
diagonals of the effective mass matrix sensitivity for the first and
fourth modes are reported. All of these results have shown that the
second approach had excellent agreement with the exact solution,
at least for eigenvalue and effective mass sensitivities, whereas the
third one shows acceptable results.

Another possible approach is as follows: 1) determine A and X
from the given structure, 2) determine X, M, and K from the pertur-
bed one, 3) calculate D from Eq. (12) rewritten at finite difference

,(K-K M-M
D=X —— )X (14)
AM, AM;

and 4) find the eigenvalue derivative A’ and I from Eq. (11). Once
I"is determined, one can calculate the eigenvector derivatives with
the finite difference approximation

Xy  Xvi—X U _ Xy —2

i=1,...,m (15)
IM, AM, AM,

The results obtained were very close to the results of the third ap-
proach.

Conclusions
A generalization for the calculation of effective mass sensitivi-
ties to the case of coincident eigenvalues has been proposed. The
results obtained with the exact approach and an approach based
on a suitable perturbation, introduced to eliminate the eigenvalue

multiplicity, are in excellent agreement. The two approaches based
on the finite difference approximation are still in good agreement,
but as expected, the elimination of significant digits does affect the
precision.
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Modal Data Are Insufficient
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and Stiffness Matrices
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Introduction

N the technical literature, there have appeared, and continue to

appear, many papers in which the researchers propose to identify
simultaneously both the mass and stiffness matrices of a dynamic
structure by applying only modal measured data. However, it can be
shown that even full modal data are insufficient for the identification
of both the mass and the stiffness matrices."? In Refs. 3 and 4, it
was proposed to use the measured mode shapes as a reference basis
in the process of correction of the mass and the stiffness matrices of
a structure. The problem is that the mode shapes are not uniquely
defined. Any mode shape can be multiplied by a nonzero constant
without changingits physical meaning. In Ref. 5, Huang and Craig,
who dealt with a six-degree-of-freedomstructure, wrote, “It should
be noted that even when all six modes are used, the correct values
of the mass and stiffness matrices cannot be obtained.” The reason
for this is that, for given mode shapes and natural frequencies, the
mass and stiffness matrices are not uniquely defined. We will now
show that the same mode shapes and natural frequencies can be
obtained for an infinite number of different pairs of stiffness and
mass matrices.
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Infinite Number of Solutions

Let X (n x n) and Q%(n x n) be themodaland frequencymatrices,
respectively, that satisfy the frequency equation of a structure with
n degrees of freedom:

KX =MXQ? (1)

where M (n x n) and K (n x n) are the mass and the stiffness matri-
ces of a given dynamic structure, respectively.
The modal matrix can be normalized to obtain

X'MX =1 X'KX=Q )
where (-)" represents the transpose of a matrix and I (n x n) repre-
sents the unit matrix. Any one of the mode shapes can be multiplied
by an arbitrary constantdifferentfrom zero, and it will still represent
the same mode shape. Hence,

¢ = Xd 3)

where d(n x n) is an arbitrary nonsingular diagonal matrix and
¢ (n x n) also represents the modal matrix of the structure. Clearly,
¢ satisfies the frequency equation, Eq. (1). We will assume that there
exists another pair of mass and stiffness matrices that yield the same
modal and frequency matrices,

p'M¢p =1 p'K¢p =Q? 4)

from which one obtains

M= (¢¢) " = (Xd*X")!
%)
IE’ — ¢—r92¢—1 — (dxr)—IQZ(Xd)—l

where (-) ! represents the inverse of a matrix. Because the matrix d
is arbitrary, it is clear that there exists an infinite number of pairs of
mass and stiffness matrices that have the same modal and frequency

matrices. Hence, the mode shapes cannot be a reference basis for
the identification of a structure.

In other words, by measuring the natural frequenciesonly, oreven
measuring the natural frequencies and the mode shapes, one cannot
identifyin a unique way both the stiffness and the mass matrices. As
said before, the authors of many papers have considered the mode
shapes as a reference basis for the simultaneousidentification of the
stiffness and mass matrices. As proved in Ref. 1 and as shown, for
example, in Ref. 5, the matrices identified in this way may be quite
different from the actual stiffness and mass matrices.

Conclusion

Simultaneous changes in the mass and stiffness matrices cannot
be identified by using modal data only. The mode shapes cannot
provide a reference basis.
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